Canadian Home Builders Association

Net Zero Home Labelling Program

About Myself

- René Kreutzwieser, EMIT
 - Net Zero Project Manager with NRG Inspections and Consulting
 - B.Sc. in Environmental Engineering
 - Energy Manager in Training certified by the Association of Energy Engineers
 - Registered Energy Advisor (EA) with Natural Resources Canada
 - Quality Assurance Specialist
 - Energy Star for New Homes
 - IDP facilitator
 - Member of the Saskatchewan Building Officials Association

Acknowledgements

 Some of the information in this presentation originates from the Canadian Home Builders Association (CHBA)

Background

 Every building on the planet must be 'net zero carbon' by 2050 to keep global warming below 2°C

Background

- "To achieve universal net zero carbon in the building sector by 2050, renovation rates must increase by 3 per cent every year starting in 2017 and must accelerate for every year of delay"
 - WGBC

Background - Regulation

 Canada has introduced regulations that will require all newly constructed homes to be Net Zero Ready starting in 2030

What is the Net Zero Home Labelling Program

- Initiative led by the CHBA to build and renovate homes to meet better than energy code requirements and produce as much energy onsite as they use
- NRCan Funded
- Requirements to make homes more comfortable and healthier than a standard home
- Started in 2015 for new homes, pilot program from 2015-16
- Pilot for renovations in 2020, launched in 2021

Net Zero vs Net Zero Ready

 A Net Zero certified home is designed, modelled and constructed to produce as much energy (from on-site renewable energy sources) as it consumes on an annual basis.

 A Net Zero Ready home is a Net Zero Home that has a renewable energy system designed for it that will allow it to achieve Net Zero Home performance, but the renewable energy system is not yet installed.

-Canadian Home Builders Association

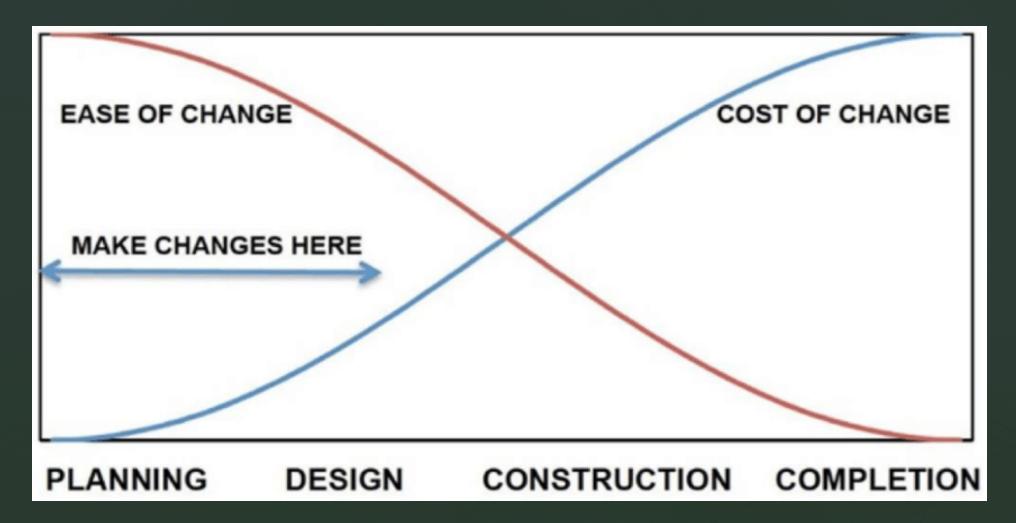
Some Key Technical Requirements


- Modelled (not as operated) net energy consumption of 0 GJ/year -using assumptions for occupant consumption
- Minimum 33% more efficient envelope than the reference house*
- Improved airtightness-field validated by testing (max. 1.5 ACH for detached, 2.0 ACH for attached)
- Cooling load threshold is calculated and included in modelling
- The energy produced is a) generated on-site and b) renewable
- Net Zero/Ready Homes are fuel agnostic (any combination of fuels)

Who Builds Net Zero Homes

- To be a Net Zero builder or renovator, a business must be a member of a local HBA chapter. This requires that they:
 - Be a Certified Professional Home Builder and take required safety courses.
 - Be a member in good standing with an approved New Home Warranty Program and enroll eligible homes in that program.
 - Renovators must be <u>RenoMark</u> certified
 - Return client messages within 2 days
 - Carry \$2 million in liability insurance
 - Provide a detailed contract for each project
 - Offer one-year warranty on all work

Who Builds Net Zero Homes


- Builders and renovators who are net zero certified must take an advanced building science course, a NZ builder/renovator course and pass exams showing understanding
- Sign attestation that their homes meet all technical requirements that are not visually verified by an EA
- A list of NZ renovators and builders can be found <u>here</u>

Integrated Design Process

- The Integrated Design Process (IDP)
 - Collaborative planning between all parties involved in the design and construction
 - IDP encourages communication between all trades and professions,
 - Helps resolve issues in the early stages

Integrated Design Process

IDP

PLANNING S	TAGE (BEFORE PROJECT STARTS)		8	EXECUTION STAGE
IDEA	DISCOVERY	BENCHMARKING & OPTIMIZATION	CHARRETTE	DECISIONS MADE
Ригрому:	Identify project vision and next steps. Identify current state. Target project information. Identify the Benchmark and Optimization tasks. Design the Charrette agenda. topics, participants.	Iterative energy modelling. Application of other diagnostic tools e.g. costing, embodied carbon. Renewable energy assessment. Identify potential synergies. Explore how construction practices might change.	 An established process that is efficient, repeatable, effective and trackable. Engages new conversations and information related to equipment, building approaches, innovative, collaborative and pro-active thinking and approaches. Broader understanding of the building/renovation process and plan. Shared expertise, project understanding and buy in. 	Take advantage of IDP process to ensure a more affisiont, sost-effective and satisfying end product. Additional modelling, benchmarking and optimization may occur.
Who	IDP facilitator, client, contractor/builder	Eriergy Advisor (EA) (unuy not be IDF facilitator)	 IDP facilitator; homeowner; contractor/builder; architect/dealgner; EA; HVAC; windows; insulation; PV; others identified in the Discovery Phase Some may NOT be contracted for the project. Their attendance is to provide education/ information only. 	Final report produced by the IDP facilitator

Natural Resources Canada Ressources naturelles Canada

CSA F280-12 Residential Heat Loss Heat Gain

- Room by room heat loss/heat gain calculation
- Provides an estimate of how much heating/cooling each room needs
- Mandatory in BC, used to show that a house has a refuge room

Indoor Air Quality

- Need to satisfy:
- Mandatory requirements such as no unvented fuel fired equipment, low outside air infiltration, minimum MERV 8 air filtration, low to no VOC emitting paint
- Six additional points from a list of such measures as:
 - No carpet or certified Green Label carpet
 - Low-VOC gypsum and hard flooring
 - No gas ranges
 - Taping registers during construction or cleaning ducts
 - Constant IAQ monitoring for VOC, PM, formaldehyde connected to smart ventilation controls

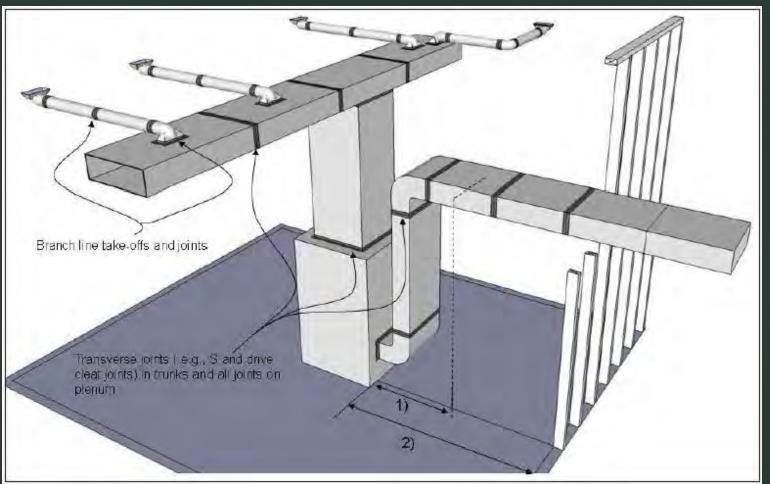
Minimum Requirements for Opaque Assemblies

- Overall, similar to current energy codes
 - Modelling must show 33% better envelope than a house built to code
- Requirement for at least R-5 below basement slab, not required by code here

Measuring Embodied Carbon

 Calculator from NRCan called MCE2 (Material Carbon Emissions Estimator)

Allows for some helpful comparisons


CATEGORY	MATERIAL	QUANTITY	%	SELECT	NET kgCO₂e EMISSIONS	MATERIAL kgCO₂e CONTENT
XPS FOAM B	BOARD	R-VALUE: 5			_	
	XPS foam board - AVERAGE	115.1 m2	100%	1	497	497
POLYISOCYA	ANURATE FOAM BOARD	R-VALUE: 5				
	Polyisocyanurate - AVERAGE	115.1 m2	100%	1	374	374
						_
EPS FOAM B	OARD	R-VALUE: 5				
	EPS foam board - AVERAGE	115.1 m2	100%	1	331	331
FIBERGLASS	BATT	R-VALUE: 5			_	
	Fiberglass batt - AVERAGE	115.1 m2	100%	1	68	68
CELLULOSE	INSULATION	R-VALUE: 5				
	Cellulose - AVERAGE	115.1 m2	100%	1	-203	-203

Duct Sealing

	Factory- designed	Actual efficiency with unsealed ducts					
	efficiency	(SEALED)					
4	24 SEER	23,3	20.3	16.5	12.9		
ž	22 SEER	21.3	18,6	15,2	11,9		
AVC and Heat Pumps	20 SEER	19.4	16.9	13.9	10.8		
8.5	18 SEER	17.5	15.2	12.5	9.7		
3	16 SEER	15.5	13.5	11,1	8.5		
4	14 SEER	13.6	11.9	9.7	7.6		
8	95% AFUE	93	85	76	67		
Furnaces	90% AFUE	88	81	72	63		
2	80% AFUE	78	72	64	56		

Source: Comfort Institute. Based on Department of Energy Research and FL Energy Office Research Report: FSEC-CR-397-91 Degradation above is typical. Impact is up to 50% greater on AC performance if return air leakage is from a hot attic or attached garage. Impact is typically 50% to 100% greater on winter heating performance of a heat pump with electric resistance auxiliary heat.

Duct Sealing

For NZ
Renovations,
only ducts that
are visible are
required to be
sealed

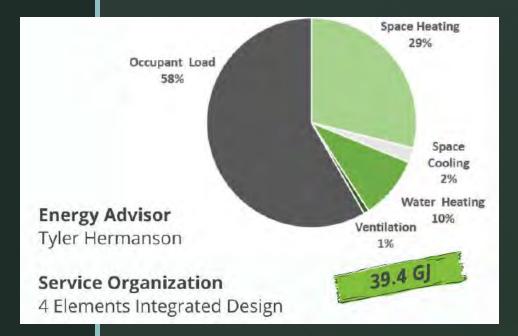
Energy Monitoring

Homeowner is still the number one determinate of energy use

Real-time energy monitors can help occupants better understand where their electricity is being used in order to reduce it

Net Zero ' So Far

Net Zero in Saskatoon


First multi unit
 residential building in
 Canada to receive a
 Net Zero Ready label

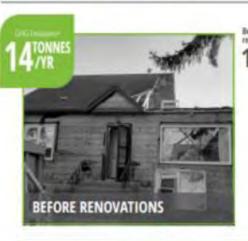
Net Zero in Saskatoon

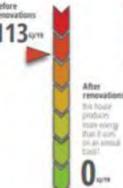
Hospital home lottery 2025 Net Zero Ready home

Net Zero Renovation Pilot Home

NET ZERO RENOVATION PILOT HOME

Renovator Dave Butterwick, Butterwick Construction


Service Organization


4 Elements Integrated Design.

Energy Advisor Tyler Hermanson, 4 Elements Integrated Design

Net Zero Pilot Home

Edmonton, AB (Climate Zone 7a)

NET ZERO RENOVATIONS PILOT HOME POST-RENOVATION DETAILS

BUILDING ENCLOSURE

Windows:

All-Weather Windows Triple Glazed. dual low-E & argon

Walls:

R14 roxul, R36 reclaimed foam exterior

Ceiling:

RSO spray foam flat & cathedral, R77 blown-in attics

Foundation:

R36 reclaimed foam & R8 foam on exterior, R12 fiberglass interior

Envelope:

72% better than NRCan referance house.

Airtightness (ACH @ 50 Pa):

Pre-reno 4.24 -> Post-Reno 0.74

Fuel Source:

All-Electric

Heating & Cooling:

Fujitsu ASHP & Electric Furnace

Water Heating:

Electric heat pump

Ventilation:

VanEE G2400H ECM

RENEWABLE ENERGY

PV System:

12.24 kW PV Longi Solar

Energy Monitor:

Neurio WT

Net Zero So Far

Towards Net Zero Renovations

- Initiative to encourage more NZ Renovations by starting with a Deep Energy Retrofit
- Fees for advising from professionals for design and analysis is funded by the CHBA and NRC
- List of minimum requirements option without a label

City of Saskatoon

- The City of Saskatoon has a Net Zero program through their Home Energy Loan Program (HELP)
 - Provides a maximum loan of up to \$60,000, and a \$10,000 rebate to approved HELP participants who perform a Net
 Zero home renovation that meets the CHBA requirements
 - Recently opened to Towards Net Zero qualifying homes

Holliston Renovation

- Plan to:
 - Add R20 to exterior with continuous air barrier
 - Add 2" spray foam + R60 cellulose in attic
 - Replace mid efficient furnace with 97% efficient with cold climate air source heat pump
 - Replace naturally aspirating DHW with on demand
 - Mechanically ventilate through ERV

Holliston Renovation

- Modelled 53% energy reduction
- Limited by a newly renovated basement and budget
- Driven by homeowners unhappy with the uneven temperatures in their home and expensive heating and cooling bills

Deep Energy Retrofits

- Net Zero requirements are stringent but need only be a goal to strive for
- Net Zero housing in the masses starts with deep energy retrofits
- The NZ program is working to remove roadblocks for more of these to happen
- To reach climate change mitigation goals, we must do a lot but not everything perfect

Doing Retrofits Right

- Building science needs to be at the forefront
- When houses are made more airtight, mechanical ventilation needs to be considered
- Care needs to be taken not to create moisture problems

Conclusion

- The sooner we get cost effective at building Net Zero homes the better
- Net Zero Renovations are beneficial to occupant health, the environment, and can significantly increase property value
- Any deep energy retrofit need to be planned
- Consider encouraging anyone you know building or renovating a home to consider Net Zero
- Incorporate some of these aspects into your own home!

Thank you for the invitation to speak today

